Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT AimThe consistency of patterns in ontogenetic differences in plant traits across the globe has not been thoroughly studied. Environmental conditions affect leaf functional traits, and these effects can differ between adult trees and saplings due to varying environmental conditions in their aerial and soil environments. Our integrative analysis aims to reveal the global universality of woody plants' ontogeny and explores influencing factors. LocationGlobal. Time PeriodStudies published in 1989–2023. Major Taxa StudiedWoody plants. MethodsWe performed a global meta‐analysis of woody plants with different plant functional types at 64 sites around the world, assessed the ontogenetic differences in nine key leaf traits and explored the environmental factors that affected the ontogenetic differences. ResultsWe observed that (1) leaf traits differed significantly between adult trees and saplings, with environmental factors playing varying roles. Photosynthetic capacity per unit area (Aa) and nitrogen content per unit dry mass (Nm) were lower in saplings than in adults under low solar radiation, but this trend reversed with increased solar radiation. Differences in stomatal density (SD) and stable carbon isotope composition (δ13C) between adults and saplings were greatest under low solar radiation; (2) ontogenetic differences in leaf thickness (LT), leaf dry mass per area (LMA) and stomatal conductance (gs) were greater at lower mean annual temperature (MAT); (3) at high mean annual precipitation (MAP), adults had higher nitrogen content per unit area (Na), while saplings had higherNmthan adults; (4) soil conditions were strongly correlated with ontogenetic differences in LT and SD, with soil pH as a key driver of variation inAa, LT, SD,NaandNm. Main ConclusionsOur findings indicate that ontogeny strongly modifies leaf functional traits and that multiple environmental factors influence the magnitude of ontogenetic differences in leaf traits. This underscores the importance of considering ontogeny when predicting trait values across plant developmental stages, modelling vegetation composed of individuals of different ages and forecasting vegetation responses to environmental changes.more » « less
-
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.more » « less
-
ABSTRACT The fundamental trade‐off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade‐off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non‐proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.more » « less
-
Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.more » « less
An official website of the United States government
